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In this manuscript, the two novel numerical methods for stiff ODEs–the Almost
Runge–Kutta (ARK) and Aluffi-Pentini (AP)–are applied to the solution of two large
stiff ODE systems that model the Belousov–Zhabotinskii reaction and air pollution
process. The efficiency and accuracy of the two methods are compared revealing advan-
tages of the ARK method especially for multidimensional ODE systems.
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1. Introduction

A chemical reaction is called homogeneous if all reacting species are uni-
formly distributed within the reacting mixture. This implies that concentrations
of reagents and products depend solely on time and therefore they can be mod-
elled by an ODE system comprising rate laws for individual species. The rate of
change of the concentration of each species does not depend explicitly on time,
so that the ODE system is autonomous [1]:

y′ = f(y), 0 � t � T < ∞ y(0) = y0, (1)

where T is the reaction (observation) duration and y0 the vector of initial spe-
cies’ concentrations.

Chemical reaction mechanisms often include individual steps with very
different reaction rates. Mathematically this means that the corresponding ODEs
are likely to be stiff since then different components of the system have dra-
matically different time constants. Moreover, ODE systems modelling complex
reactions are often non-linear and cannot be resolved analytically which necessi-
tates their numerical resolution. Since stiff ODEs cannot be solved using classical
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methods such as explicit Euler, Runge–Kutta or multistep methods [2–6] special
methods are required.

Here we consider two novel one-step numerical methods for stiff ODEs.
These are the Almost Runge-Kutta (ARK) method developed by Butcher and
Rattenbury [7] and the Aluffi-Pentini (AP) method (as we denote it here for the
sake if conciseness) suggested by Aluffi-Pentini et al. [8].

The ARK method is similar to classical Runge–Kutta methods [9] but dif-
fers from them in that the former provides (and utilises) approximations of the
first and second derivatives of the solution.

The AP method belongs to the class of matrix exponential methods and is
based on the idea of iteratively obtaining “exact” solutions to linearised ODEs
while avoiding the matrix inversion operation.

Both of these methods may be applied to stiff problems and the aim of this
article is to compare their performance properties.

2. Methods for stiff ODEs

Thorough description of the ARK and AP methods is given in [7, 8, 10] so
here we give a short account of the methods.

2.1. Almost Runge–Kutta method

In this method, approximations of the solution and its first and second
derivatives are evaluated at each step [7]: y[n]

1 ≈ y(tn); y[n]
2 ≈ hy′(tn); y[n]

3 ≈
h2y′′(tn). Every integration step is performed in s stages. Here we consider the
three stage implicit ARK method. Approximations to y(tn + hci ) are computed
using the formula:

Yi =
i∑

j=1

ai j hF j +
3∑

j=1

ui j y
[n]
j , i = 1, 2, 3. (2)

The approximations of the solution and its derivatives at the end of the step are
given by:

y[n+1]
i =

3∑

j=1

bi j hF j +
3∑

j=1

vi j y
[n]
j , i = 1, 2, 3, (3)
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where the coefficients ai j , ui j and bi j , vi j are elements of the following matrix:

[
A U

B V

]
=

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

2
5 0 0 1 4

15 − 2
45

− 11
144

2
5 0 1 127

720 − 13
540

−21
20

8
5

2
5 1 1

20 0

−21
20

8
5

2
5 1 1

20 0

0 0 1 0 0 0
39
20 −18

5
3
2 0 3

20 0

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (4)

F j = f(tn + hc j , Y j ), i = 1, 2, 3; c j is an element of the three-dimensional

vector c =
[

2
3

1
2 1

]T
.

2.2. The Aluffi-Pentini method

This method was proposed by Aluffi-Pentini et al. [8] for the solution of
stiff ODEs arising in chemical kinetics. At each step of the method the ODE sys-
tem (1) is linearised as

dy(t)

dt
= fk + Jk (y(t) − yk). (5)

The exact solution of the latter is given by

y(t) = J−1(e(t−tk)J − I) · fk + yk . (6)

Letting

ξ k(h) = y(t) − yk, (7)

where h = t − tk one can rewrite the linearised equation (5) in the form

dξ

dh
= Jξ + f. (8)

For a non-singular matrix J the solution of this ODE is:

ξ(h) = J−1(ehJ − I)f. (9)

Next, the following augmented (n + 1) × (n + 1) matrix and (n + 1)-dimensional
vector are defined as:

A ≡
(

J f
0T 0

)
, η ≡

(
ξ

1

)
.
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Using these notations the ODE (8) may be cast into the following homogeneous
differential equation

dη

dh
= Aη, (10)

with initial condition η0 ≡
(

0
1

)
.

The latter ODE allows for the exact solution to be readily obtained:

η(h) = ehAη0, (11)

which requires the evaluation of matrix exponential. This may be efficiently done
using by successive matrix squaring with subsequent round-off error smearing as
described in the original paper [8].

It is clear that η is given by the last column of ehA and the sought solution
vector ξ is given by the first n elements of η. Hence, the approximate solution at
the step (k + 1) by the AP method is

yk+1 = yk + ξ k(h). (12)

3. Numerical solution of stiff ODE systems

3.1. Belousov–Zhabotinskii reaction

The Belousov–Zhabotinskii reaction [11] may be represented by the follow-
ing scheme of homogeneous chemical reactions:

(1) A + Y → X, k1 = 4.72 1mol−1s−1,

(2) X + Y → P, k2 = 3 × 109 1mol−1s−1,

(3) B + X → 2X + Z , k3 = 1.5 × 104 1mol−1s−1,

(4) 2X → Q, k4 = 4 × 107 1mol−1s−1,

(5) Z → Y, k5 = 1 s−1. (13)

Letters A, . . . , Z denote species taking part in the reactions. Since the
Belousov–Zhabotinskii reaction is homogeneous (meaning that all species are
uniformly distributed in the reaction space) we only need to consider variations
of the concentrations in time. Each reaction step is characterised by its reaction
rate constant. Obviously, the rate constants differ by several orders of magnitude
which indicates the likeliness of the corresponding ODE system being stiff.

The initial conditions are given by initial concentrations of species at t = 0:

A = B = 0.066, Y = X = P = Q = 0, Z = 0.002. (14)
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The ODE system modelling the reaction scheme (13) was obtained using the
algorithm described in [1]:

dA

dt
= −k1 AY ,

dY

dt
= −k1 AY − k2 XY + k5 Z ,

dX

dt
= −k2 XY + k3 X B − 2k4 X2 + k1 AY ,

dP

dt
= k2 XY ,

dB

dt
= −k3 B X ,

dZ

dt
= k3 B X − k5 Z ,

dQ

dt
= k4 X2. (15)

The latter was considered at the interval t ∈ [0, 40] and solved using both the
ARK and AP methods.

In order to reduce the computational time an algorithm for adaptive step
selection was implemented. This is based on “double calculation” when the solu-
tion is computed using the step sizes hk and 2hk which permits to estimate local
error, rk , and then compute the optimal length of the next step using the prede-
fined tolerance, ε [12]:

hk+1 = hk(ε/rk)
1/p+1. (16)

It was found during the numerical solution of (15) by the ARK method that
some components of the solution become negative when the tolerance is ε =
10−7 or higher (see figure 1). This contradicts the physical meaning of concentra-
tions. However, according to the theorem proved in [2] there always exists a limit
of local error ε0 such that for any ε< ε0 the numerical solution of the ODE sys-
tem (1), which models a chemical process, obtained using the Euler method will
remain strictly positive and bounded above for any t > 0. The statement of the
theorem has been shown to be valid for higher order one-step numerical meth-
ods. Hence, it was found that the application of the ARK method with ε = 10−8

gives non-negative solutions. This is exemplified in figure 1 which shows the con-
centration of Z computed with ε = 10−7 as well as the converged solution. It can
be seen that due to the concentration of Z becoming negative at around 12 s
the rapid increase in it occurs almost two seconds earlier than in the converged
solution.
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Figure 1. Concentration of Z computed using the ARK method.

The results obtained using the AP method with ε = 10−7 are shown in
figure 2(a). Despite the absence of negative concentration values the solution
strongly deviates from the converged one shown in figure 2(b).

In order to determine the maximum relative error, δ, in the numerically
computed concentrations depending on the simulation tolerance the converged
solution was computed using the KinFitSim program [13] employing Gear’s
method with the tolerance ε = 10−14.

Figure 3 shows the dependence of the relative error on the tolerance of the
method for the ARK and AP methods. For all values of ε the relative error is
smaller for the ARK method.
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Figure 2. Concentration distributions of species taking part in the Belousov–Zhabotinskii reaction
(a) computed using the AP method with ε = 10−7, and (b) converged solution.

Table 1 presents the CPU times and numbers of steps required for each of
the two methods to solve the ODE system (15) with ε = 10−8 (all calculations
were performed on a PC equipped with Intel Pentium III processor at 800 MHz
and 256 MB of RAM). The AP method requires a significantly smaller number
of steps than the ARK method. However, computational costs of the two meth-
ods (reflected by CPU times) are comparable because the AP method performs
more arithmetic operations per step than the ARK method due to the numerical
computation of matrix exponential [10].
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Figure 3. Log–log plot of maximum relative error in computed concentrations as a function of
tolerance for the ARK and AP methods (Belousov–Zhabotinskii problem).

Table 1
Computation times and numbers of steps taken by the ARK and AP methods required to solve the

ODE system (15) with ε = 10−8.

Method CPU time, s. Number of steps taken Number of rejected steps

ARK 9.459 91,073 41
AP 9.353 2872 76

3.2. Pollution problem

The ARK and AP methods were also used to solve a problem from the
“Test Set for Initial Value Problem Solvers” [14]. This IVP is a part of the model
of air pollution developed at The Dutch National Institute of Public Health
and Environmental Protection (RIVM) and it was described by Verwer [15].
The reaction scheme consisting of 25 individual reaction steps and involving 20
different species is given in table 2 along with the corresponding reaction rates,
r j , and rate constants, k j . The quantities yi , i = 1, 20 denote the concentrations
of reacting species: y1 = [N O2], y2 = [N O], y3 = [O3 P], y4 = [O3], y5 =
[H O2], y6 = [O H ], y7 = [HC H O], y8 = [C O], y9[AL D], y10 = [M E O2], y11 =
[C2 O3], y12 = [C O2], y13 = [P AN ], y14 = [C H3O], y15 = [H N O3], y16
= [O1D], y17 = [SO2], y18 = [SO4], y19 = [N O3], y20 = [N2 O5].
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The mathematical model of the reaction scheme in Table 2 is the following
system of ordinary differential reactions:

dy
dt

= f(y), y ∈ R20, 0 � t � 60, (17)

where the right-hand side vector-function is defined in (18).

f(y) =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

− ∑
j∈{1,10,14,23,24}

r j + ∑
j∈{2,3,9,11,12,22,25}

r j

−r2 − r3 − r9 − r12 + r1 + r21
−r15 + r1 + r17 + r19 + r22
−r2 − r16 − r17 − r23 + r15
−r3 + 2r4 + r6 + r7 + r13 + r20
−r6 − r8 − r14 − r20 + r3 + 2r18
−r4 − r5 − r6 + r13
r4 + r5 + r6 + r7
−r7 − r8
−r12 + r7 + r9
−r9 − r10 + r8 + r11
r9
−r11 + r10
−r13 + r12
r14
−r18 − r19 + r16
−r20
r20
−r21 − r22 − r24 + r23 + r25
−r25 + r24

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (18)

The initial concentrations are given by the vector

y0 = (0 0.2 0 0.04 0 0 0.1 0.3 0.01 0 0 0 0 0 0 0 0.007 0 0 0)T .

For the solution of the ODE system (17) the algorithm of adaptive step size
selection based on “double calculation” and expression (16) were also employed.

The numerical solution obtained using the AP method with tolerance
ε = 10−6 reveals that the concentration of NO3 species (y19) gets negative val-
ues at some time points and displays non-physical oscillations (Figure (4a)). The
numerical solution obtained using the ARK method with the same tolerance
is also invalid because of irregular oscillations despite the fact that all concen-
tration values are non-negative. The converged solution for the same species is
attained with tolerance ε = 10−8 for both methods and it is shown in figure 5.

The reference data provided in the Test Set for IVP Solvers [14] for the prob-
lem at hand in the form of concentration values at the end of the integration
interval have allowed us to investigate the convergence of the numerical results.



V.N. Shulyk et al. / Numerical solution of stiff ODEs 261

Table 2
Reaction scheme of the air pollution process.

No. Reaction Reaction rate Rate constant

1 N O2 → N O + O3 P r1 = k1 y1 k1 = 0.35
2 N O + O3 → N O2 r2 = k2 y2 y4 k2 = 26.6
3 H O2 + N O → N O2 + O H r3 = k3 y5 y2 k3 = 0.123 × 105

4 HC H O → 2H O2 + C O r4 = k4 y7 k4 = 0.860 × 10−3

5 HC H O + O H → H O2 + C O r5 = k5 y7 y6 k5 = 0.150 × 105

6 HC H O → C O r6 = k6 y7 k6 = 0.820 × 10−3

7 AL D → M E O2 + H O2 + C O r7 = k7 y9 k7 = 0.130 × 10−3

8 AL D + O H → C2 O3 r8 = k8 y9 y6 k8 = 0.240 × 105

9 C2 O3 + N O → N O2 + M E O2 + C O2 r9 = k9 y11 y2 k9 = 0.165 × 105

10 C2 O3 + N O2 → P AN r10 = k10 y11 y1 k10 = 0.900 × 104

11 P AN → C2 O3 + N O2 r11 = k11 y13 k11 = 0.022
12 M E O2 + N O → C H3 O + N O2 r12 = k12 y10 y2 k12 = 0.120 × 105

13 C H3 O → HC H O + H O2 r13 = k13 y14 k13 = 1.88
14 N O2 + O H → H N O3 r14 = k14 y1 y6 k14 = 0.163 × 105

15 O3 P → O3 r15 = k15 y3 k15 = 0.480 × 107

16 O3 → O1 D r16 = k16 y4 k16 = 0.350 × 10−3

17 O3 → O3 P r17 = k17 y4 k17 = 0.0175
18 O1D → 2O H r18 = k18 y16 k18 = 0.100 × 109

19 O1D → O3 P r19 = k19 y16 k19 = 0.444 × 1012

20 SO2 + O H → SO4 + H O2 r20 = k20 y17 y6 k20 = 0.124 × 104

21 N O3 → N O r21 = k21 y19 k21 = 2.10
22 N O3 → N O2 + O3 P r22 = k22 y19 k22 = 5.78
23 N O2 + O3 → N O3 r23 = k23 y1 y4 k23 = 0.0474
24 N O3 + N O2 → N2 O5 r24 = k24 y19 y1 k24 = 0.178 × 104

25 N2 O5 → N O3 + N O2 r25 = k25 y20 k25 = 3.12

Table 3
Computation times and numbers of steps taken by the ARK and AP methods required to solve the

ODE systems (17) – (18) with ε = 10−8.

Method CPU time, s. Number of steps taken Number of rejected steps

ARK 71.71 33,487 0
AP 430.56 2636 698

The dependence of the maximum relative error on the tolerance is demon-
strated in figure 6. As in the case of the Belousov–Zhabotinskii problem, the rel-
ative error is smaller for the ARK method for all values of ε. Moreover, the
difference becomes more pronounced for lower values of ε (higher accuracy).

The CPU times and numbers of integration steps are given in table 3 along
with the numbers of rejected steps. These values correspond to the tolerance
ε = 10−8.
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Figure 4. Concentration distribution of NO3 computed using (a) the AP method, and (b) the ARK
method with tolerance ε = 10−6.

As can be seen from table 3 the CPU time is much higher in the case
of the AP method whereas the number of steps for this method is significantly
smaller than that for the ARK method. This example emphasizes that the AP
method becomes increasingly inefficient as the dimensionality of the problem
increases. The increased number of arithmetic operations results also in increased
round-off errors which is reflected in lower convergence rate as exemplified in
figures 3 and 6.
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Figure 5. Converged concentration distribution of NO3.

Figure 6. Log–log plot of maximum relative error in computed concentrations as a function
of tolerance for the ARK and AP methods (pollution problem).

4. Conclusions

The comparison of the ARK and AP methods revealed that both meth-
ods are capable of solving large and extremely stiff ODE systems. Nevertheless
the ARK method is superior to the AP method in terms of computational costs
and convergence rate, especially for large ODE systems, despite the fact that it
requires smaller integration steps.
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